A simple nanostructured polymer/ZnO hybrid solar cell-preparation and operation in air.
نویسندگان
چکیده
A detailed description is given of the preparation of a polymer solar cell and its characterization. The solar cell can be prepared entirely in the ambient atmosphere by solution processing without the use of vacuum coating steps, and it can be operated in the ambient atmosphere with good operational stability under illumination (1000 W m(-2), AM1.5G, 72 ± 2 °C, 35 ± 5% relative humidity) for 100 h with a 20% loss in efficiency with respect to the initial performance. The dark storability (darkness, 25 °C, 35 ± 5% relative humidity) has been shown to exceed six months without notable loss in efficiency. The devices do not require any form of encapsulation to gain stability, while a barrier for mechanical protection may be useful. The devices are based on soluble zinc oxide nanoparticles mixed with the thermocleavable conjugated polymer poly-(3-(2-methylhexan-2-yl)-oxy-carbonyldithiophene) (P3MHOCT), which through a thermal treatment is converted to the insoluble form poly(3-carboxydithiophene) (P3CT) that generally gives stable polymer solar cells. The devices employed a solution based silver back electrode. One advantage is that preparation of the devices is very simple and can be carried out by hand under ambient conditions, requiring only a hot plate that can reach a temperature of 210 °C, and preferably also a spincoater. This type of device is thus excellently suited for teaching and demonstration purposes provided that the materials are at hand.
منابع مشابه
بهبود چگالی جریان و افزایش کارایی سلول خورشیدی پلیمری P3HT:PCBM با استفاده از نانومیله اکسید روی
Hybrid solar cells combine organic and inorganic materials with the aim of utilizing the low cost cell production of organic photovoltaics (OPV) as well as obtaining other advantages, such as tuneable absorption spectra, from the inorganic component. Whilst hybrid solar cells have the potential to achieve high power conversion efficiencies (PCE), currently obtained efficiencies are quite low. T...
متن کاملNanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes
In this article, we have proposed a nanostructured photovoltaic device based on the ZnO nanostructures/poly(3-hexylthiophene)(P3HT):TiO2 nanorod hybrid by solution processes at low temperature. An array of ZnO nanorods with a larger size of y50 nm in diameter and y180 nm in length are grown to provide direct pathways for efficient charge collection. TiO2 nanorods with a size of y5 nm in diamete...
متن کاملImproving Hybrid Solar Cells: Overcoming Charge Extraction Issues in Bulk Mixtures of Polythiophenes and Zinc Oxide Nanostructures!
Improving Hybrid Solar Cells: Overcoming Charge Extraction Issues in Bulk Mixtures of Polythiophenes and Zinc Oxide Nanostructures! ! Grant Olson! ! ! Organic photovoltaics (OPVs) have received a great deal of focus in recent years as a possible alternative to expensive silicon based solar technology. Current challenges for organic photovoltaics are centered around improving their lifetimes a...
متن کاملOptical properties and morphology of ZnO nanostructures and organic photovoltaic devices (October 12, 2011)
The talk will mainly concentrate on the results of optical and morphological properties of zinc oxide (ZnO) nanostructures and on some recent work on organic polymer based photovoltaic devices. Low dimensional nanostructures of ZnO have potential to improve the efficiency and compactness of electronic and photonic devices including LEDs, optical waveguides and sensors. The growth mechanism and ...
متن کاملLight Weight, Flexible, Nanostructured Organic Solar Cells for Space Applications
Improving the efficiency of organic solar cells (OSCs), which are far less efficient than inorganic semiconductor solar cells, is of paramount importance to the field of polymer photovoltaics. Current state-of-the-art bulk heterojunction (BHJ) OSCs utilize a homogeneous blend of the semiconducting polymer poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl C61butyric acid me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 19 42 شماره
صفحات -
تاریخ انتشار 2008